
COMPUTER SYSTEMS LABORATORY 

STANFORD UNIVERSITY • STANFORD, CA 94305-4055 

Application of Formal Specification to 
Software Maintenance 

Neel Madhav 
Sriram Sankar 

Technical Report No. CSL-TR-90-436 
(PAVG Report No. 48) 

August, 1990 

BBJffiü^Jfl 

ÄEpxoved toi  pups :eie«*S 

H 

19960729 093 
ÜTIC qöALKY INSPECTED 3 

This research was supported by the Defense Advanced Research Projects Agency under 
contract N00039-84-C-0211. 



DISCLAIMEl NOTICE 

THIS DOCUMENT IS BEST 

QUALITY AVAILABLE. THE COPY 

FURNISHED TO DTIC CONTAINED 

A SIGNIFICANT NUMBER OF 

PAGES WHICH DO NOT 

REPRODUCE   LEGIBLY. 



Application of Formal Specification to Software 
Maintenance 

Neel Madhav Sriram Sankar 

Program Analysis and Verification Group 

Computer Systems Laboratory 

Departments of Computer Science and Electrical Engineering 

Stanford University 
Stanford, CA 94305-4055 

Technical Report CSL-TR-90-436 

(Also Program Analysis and Verification Group Report No. 48) 

August, 1990 

Abstract 

This paper describes the use of formal specifications and associated tools in addressing 
various aspects of software maintenance — corrective, perfective, and adaptive. It also 
addresses the refinement of the software development process to build programs that are 
easily maintainable. The task of software maintenance in our case includes the task of 
maintaining the specification as well as maintaining the program. 

We focus on the use of Anna, a specification language for formally specifying Ada pro- 
grams, to aid us in maintaining Ada programs. These techniques are applicable to most 
other specification language and programming language environments. The tools of interest 
are: (1) the Anna Specification Analyzer which allows us to analyze the specification for 
correctness with respect to our informal understanding of program behavior; and (2) the 
Anna Consistency Checking System which monitors the Ada program at runtime based on 
the Anna specification. 

Keywords—software maintenance, software specification, specification analysis, runtime 
consistency checking, perfective maintenance, corrective maintenance, adaptive maintenance, 
Anna. 
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1    Introduction 
Specification languages present an opportunity to de- 
velop new techniques in all phases of software main- 
tenance. These languages provide a capability for ex- 
pressing, at an abstract level, what a program does. 
Formal specifications are expressed in a machine pro- 
cessable form — they can be parsed, checked for static 
semantic errors, and in many cases, compiled into run- 
time tests. Typical examples of specification languages 
developed during the past few years are Anna [7], 
Larch [4], RAISE [11] and Z [19]. 

The processes of software development and mainte- 
nance iterate over requirements, design, coding, and 
testing [2,12,13,14]. Most systems have informal re- 
quirements, and ad-hoc design, coding, and testing. 
The specification language, tools and strategies pre- 
sented in this paper make the processes of software 
development and maintenance less ad-hoc. The main 
point of this paper is that effective and powerful tech- 
niques can be developed for software maintenance 
based on formal specifications. 

The software maintenance techniques discussed in 
this paper use relaxed formal methods. Relaxed formal 
methods use formal specifications in a manner which 
does not insist upon producing provably correct pro- 
grams. Our strategies for application of formal speci- 
fication to software maintenance involve informal rea- 
soning and the support of debugging and analysis tools 
which use specifications. 

There are two aspects to designing new software de- 
velopment and maintenance techniques: 

1. developing a new capability. 
We have designed the language Anna for specify- 
ing Ada [1] programs. 

2. designing methods and tools for applying that ca- 
pability. 
A methodology for formal specification and im- 
plementation of Ada packages is presented in [9]. 
This allows a user, given a package specification 
in Ada, to follow a few simple steps to obtain an 
Anna formal specification and an implementation 
of the package. 

We have developed a suite of tools for analyzing 
specifications prior to program development (the 
Anna Specification Analyzer) [10] and for checking 
the runtime behavior of programs (once they have 
been developed) for consistency with specifications 
(the Anna Consistency Checking System) [15,18]. 

The Anna Specification Analyzer can be used to 
develop adequate formal specifications from an in- 
formal understanding of the program functional- 
ity.  This is done by starting with a specification 

and using the Specification Analyzer to perform 
symbolic analysis on the specification. The results 
of this symbolic analysis are then compared to our 
informal understanding of the program function- 
ality. 

The Anna Consistency Checking System moni- 
tors the Ada program at runtime based on the 
Anna specification. This is done by checking the 
proposed specification against the behavior of the 
software. Inconsistencies are reported through a 
specialized Anna debugger. A methodology for us- 
ing this tool to debug formally specified programs 
is presented in [6]. 

Our techniques are applicable to all three kinds of 
software maintenance: 

1. perfective maintenance. 
Perfective maintenance involves enhancing (or up- 
grading) an already existing piece of software. Ex- 
cept for the fact that the original software does 
not handle the proposed enhancements, it has no 
other known faults. Enhancement may involve ex- 
tension or modification of specification or code. 
Typically perfective maintenance will first involve 
enhancements to the specification. This can be 
done with the aid of the Specification Analyzer. 
Once, we have an enhanced set of specifications, 
we need to enhance the program code based on 
the new specification. The Consistency Checking 
System can aid us in achieving this. 

2. corrective maintenance. 
Corrective maintenance addresses processing, per- 
formance, and implementation failures. Correc- 
tive maintenance can involve correction of errors 
either in the specification or in the program. 

A fault in the specification is detected in the fol- 
lowing ways: (1) The program behaves as antici- 
pated, but violates a specification — in this case, 
the violated specification is incorrect; or (2) The 
program does not behave as anticipated, but does 
not violate any specification — in this case, the 
program is certainly incorrect, and either the spec- 
ification is also incorrect or is incomplete (does not 
specify against this behavior). 

A fault in the program is detected automatically 
by the Consistency Checking System. A method- 
ology called two-dimensional pinpointing [6] has 
been developed to proceed from the initial fault 
detection to actually pinpointing the error and 
correcting it. 

3. adaptive maintenance. 
Adaptive maintenance involves  modifying  soft- 



ware to overcome changes in the processing (both 
hardware and software) environment of the pro- 
gram. Ada is considered to be quite portable, 
however, there are many assumptions that Ada 
programmers make of the underlying software and 
hardware environments. These assumptions range 
from quite general (e.g., the Ada compiler being 
used is correct), to very specific (e.g., the prede- 
fined integer type is represented using 32 bits). In 
general, we write formal specifications that reflect 
these assumptions we make, and the Consistency 
Checking System will notify us automatically of 
any violations of these assumptions. A real-life 
example of the application of our system was the 
detection of an Ada compiler bug when porting 
software from one machine to another [16]. 

Section 2 is an overview of Anna. Section 3 describes 
the Specification Analyzer while Section 4 describes the 
Anna Consistency Checking System. Sections 5, 6 and 
7 deal with application of specifications to perfective, 
corrective and adaptive maintenance respectively. Sec- 
tion 8 discusses some real-life experiences with formal 
specifications. Section 9 concludes the paper. 

2    An Overview of Anna 

Anna (ANNotated Ada) is a language extension of 
Ada [1] to include facilities for formally specifying the 
intended behavior of Ada programs. In this section a 
brief outline of a few kinds of annotations is given. A 
complete definition of Anna is given in [8]. 

Anna is based on first-order logic and its syntax is a 
straightforward extension of Ada syntax. Anna con- 
structs appear as formal comments within the Ada 
source text (within the Ada comment framework). 
Anna defines two kinds of formal comments, which are 
introduced by special comment indicators in order to 
distinguish them from informal comments. These for- 
mal comments are virtual Ada text, each line of which 
begins with the indicator --:, and annotations, each 
line of which begins with the indicator --|. 

2.1    Virtual Ada Text 

Virtual Ada text is Ada text which appears as formal 
comments, but otherwise obeys all the Ada language 
rules. Virtual text may refer to actual text, but is not 
allowed to affect the computation of the actual pro- 
gram. The purpose of virtual Ada text is to define 
concepts1 used in annotations that are not explicitly 
implemented as part of the program. Virtual Ada text 

1 Functions used in annotations are called concepts. 

may also be used to compute values that are not com- 
puted by the actual program, but that are useful in 
defining the behavior of the program. 

Example of virtual text: 

package  QUEUE_MANAGER is 

type  QUEUE  is  private; 

- - :   function   IS_MEMBER(E : ELEMENT; Q : QUEUE) 

 : return  BOOLEAN; 

end   QUEUE_MANAGER; 

In the above example, IS_MEMBER is a virtual func- 
tion. It is used in annotations of actual subprograms 
of QUEUE_MANAGER. 

2.2    Annotations 

Annotations are constraints on the underlying Ada 
program. They provide a capability to express at an 
abstract level what a program does. Anna provides 
different kinds of annotations, each associated with a 
particular Ada construct. 

Type Annotations: A type or subtype annotation 
is a constraint on an Ada type. Type annotations are 
located immediately after the definition of the type 
they constrain, and are bound to the type definition 
by the keyword where. 

Example of a type annotation: 

type  QUEUE is  record 

STORE :QUEUE_ARRAY(I. .MAX); 

IN_PTR, OUTJPTR: INTEGER range  1..MAX; 

SIZE .'INTEGER  range   0. .MAX; 

end  record; 

--|  where  Q: QUEUE  => 

--|     (Q.IN_PTR-Q.OUT_PTR-Q.SIZE) 
--| mod   MAX   =   0; 

The above type annotation constrains all values of 
the type QUEUE so that their components, IN_PTR, 
OUT_PTR and SIZE satisfy the equation in the anno- 
tation. 

There is another form of type annotation — the mod- 
ified type annotation. They constrain the type at the 
beginning and end of each package operation. The 
above type annotation is rewritten as a modified type 



annotation below: 

--|  where in  out  Q: QUEUE  => 

--|        (Q.IN_PTR — Q.OUTJPTR — Q.SIZE) 

mod   MAX   =   0; 

Object Annotations: An object annotation is a 
BOOLEAN expression constrains the values of the vari- 
ables occurring in the expression throughout the scope 
of the annotation. 

Example of an object annotation: 

procedure  INSERT(E : ELEMENT; Q : in   out  QUEUE)   is 

I:INTEGER := Q.OUT_PTR; 

if Q.IN_PTR  <=  Q.OUTJPTR  then 

Q. OUT_PTR  <=   I   <=   MAX  or 

1   <=   I   <=   Q.IN_PTR 

else 

OUT_PTR  <=   I   <=   IN_PTR 

end  if; 

begin 

end  INSERT; 

In this example, the variable I is constrained to certain 
ranges depending on the value of Q. 

Subprogram Annotations: Subprogram annota- 
tions are used to describe the behavior of subprograms. 
A subprogram annotation may specify an input condi- 
tion, an output condition, or an exceptional condition. 
Subprogram annotations of functions may specify the 
value returned by a function. 

Examples of subprogram annotations: 

function IS_FULL(Q : QUEUE)  return  BOOLEAN; 

— |   <<SPEC_IS_FULL>> 

— |  where 

— I return  LENGTH(Q)  =  MAX; 

procedure  INSERT(E : ELEMENT; Q :in   out  QUEUE); 

 |   <<SPEC_INSERT>> 

— |  where 
 j out   (LENGTH(Q)   =   LENGTH(in  Q)   +   l), 

— j       out (IS_MEMBER(E, Q)); 

The first of the above examples is that of a result an- 
notation. It specifies that the value returned by the 
function IS_FULL is the boolean value LENGTH(Q) = 
MAX. The annotations on the procedure INSERT are 
out annotations.  Out annotations of INSERT must be 

satisfied whenever a call to INSERT terminates nor- 
mally — i.e., terminates without propagating an ex- 
ception. The modifier in on Q specifies that we are 
referring to the value of Q on entry to INSERT. There- 
fore, whenever a call to INSERT terminates normally, 
the length of the resulting Q must be one more than 
the length of the value of Q on entry. Also, on termi- 
nation, E must be a member of Q. 

The above two examples have an extra feature — 
annotation names. SPEC_IS_FULL and SPECJNSERT 
are annotation names in these examples. They are use- 
ful in referring to the annotations from the tools. 

Statement Annotations: There are two different 
kinds of statement annotations — simple statement an- 
notations and compound statement annotations. 

Simple statement annotations (or assertions) are 
constraints on a single statement. 

Example of a simple statement annotation: 

Q.SIZE  := Q.SIZE + 1; 
 1 Q.SIZE = in Q.SIZE +  i; 

This annotation says that after the execution of the 
assignment statement, the new value of Q. SIZE will 
be 1 more than its previous value. 

Compound statement annotations are constraints on 
compound statements. They constrain all observable 
states in the compound statement 

Example of a compound statement annotation: 

— | with 
 j Q.OUT_PTR =  in Q.OUT_PTR; 

begin 

Q . STORE(Q . IN_PTR) := E; 

Q.IN_PTR   :=   Q.IN_PTR  mod   MAX+i; 

Q.SIZE := Q.SIZE + 1; 

end; 

The annotation above constrains the block statement 
above (which consists of three assignment statements) 
to execute in such a way that Q. OUT_PTR remains 
the same throughout its execution. 

Exception Annotations: Exception annotations 
(or propagation annotations) specify the exceptional 
behavior of subprograms. There are two different kinds 
of exception annotations — strong propagation anno- 
tations and weak propagation annotations. 

A strong propagation annotation specifies conditions 
under which exceptions should be propagated. The 
conditions are with respect to the initial state of the 



subprogram. If the conditions are satisfied, then the 
subprogram must terminate by propagating the speci- 
fied exception. 

Example of a strong propagation annotation: 

procedure  INSERT(E : ELEMENT; Q :in   out   QUEUE); 

— |  where 

 1 IS_FULL(Q)   =>   raise  FULL; 

This annotations specifies that if IS_FULL(Q) is true 
on entry to INSERT, then INSERT must terminate by 
propagating the exception FULL. 

A weak propagation annotation specifies what hap- 
pens when an exception is propagated. It specifies con- 
ditions that must be satisfied by the subprogram if a 
call terminates by propagating one of the specified ex- 
ceptions. 

Example of a weak propagation annotation: 

procedure  INSERT(E : ELEMENT; Q : in   out   QUEUE); 

— I  where 

 1 raise   FULL   =>   Q   =   in   Q; 

This annotation specifies that if the procedure INSERT 
terminates by propagating the exception FULL, then 
INSERT does not change the value of Q. 

Note that out annotations do not specify abnormal ter- 
mination. 

Axiomatic Annotations: Axiomatic annotations 
(or package axioms) are constraints on operations of 
a package. They must occur in the package visible 
part. They begin with the keyword axiom followed by 
a sequence of BOOLEAN expressions which are usually 
quantified with respect to types defined in the package. 
The complete Anna program shown below includes an 
example of an axiomatic annotation. 

2.3    A Complete Anna Program 

We now present an Ada package formally specified us- 
ing Anna. This package will be used extensively in ex- 
amples in the later sections. The package implements 
a queue with the typical operations like create, insert 
and remove. Most of the Anna examples above are 
from this package. 

The Ada package body, including the Ada private 
part, contains an implementation, the details of which 
are hidden from users. This hidden part also contains 
local annotations specifying how the implementation 
works. The hidden annotations refer to the hidden 
implementation details. 

Some requirements are specified both as subprogram 
annotations and axiomatic annotations. The reason for 
this duplication is (1) to illustrate how the same re- 
quirement can be specified in more than one way; and 
(2) some of our later examples use the subprogram an- 
notation version, while others use the axiomatic anno- 
tation version. 

The package is shown below. Only relevant portions 
of the package body are included to save space. 

generic 

type  ELEMENT  is  private; 

MAX : POSITIVE; 

package QUEUE_MANAGER is 

type QUEUE  is  private; 

EMPTY, FULL : exception; 

 The following are concepts used in specifications. 

 :  function  IS_MEMBER(E : ELEMENT; Q : QUEUE) 

 : return  BOOLEAN; 

function   LENGTH(Q : QUEUE)   return   INTEGER; 

function  IS_EMPTY(Q : QUEUE)   return  BOOLEAN; 

--|   <<SPEC_IS_EMPTY>>   where 

--| return   LENGTH(Q)   =   0; 

function   IS_FULL(Q : QUEUE)   return   BOOLEAN; 

--|   <<SPEC_IS_FULL>>   where 

--j return   LENGTH(Q)   =   MAX; 

function  TOP(Q: QUEUE)   return   ELEMENT; 

--|   <<SPEC_TOP>>   where 

--j IS_EMPTY(Q)   =>   raise  EMPTY; 

 The following are operations specified by concepts. 

function  CREATE  return  QUEUE; 

 1   <<SPEC_CREATE>>  where 

--| return   Q : QUEUE   =>   LENGTH(Q)   =   0; 

procedure  INSERT(E : ELEMENT; Q :in   out   QUEUE); 

--|   <<SPEC_INSERT>>   where 

 1 IS_FULL(Q)   =>   raise  FULL, 

 1 raise  FULL  =>   Q   =   in   Q, 

--j out(LENGTH(Q)   =   LENGTH(in   Q)   +   l), 

 1 out(lS_MEMBER(E,Q)); 

procedure REMOVE(E:out  ELEMENT; 

Q:in out QUEUE); 

--|   <<SPEC_REMOVE>>   where 

--j IS_EMPTY(Q)   =>   raise  EMPTY, 

--| raise  EMPTY  =>   Q  =   in  Q, 

--| out(LENGTH(Q)   =   LENGTH(in   Q)   -   l), 

--j out(E   =   TOP(in   Q)); 



-— Axiomatic annotations follow. In Anna, the attribute 

-- 'OUT is a record of all the output values produced by 

-—   the subprogram. 

axiom  for  all   EO, El: ELEMENT; QO : QUEUE => 

REMOVE'OUT(EO,INSERT'OUT(EI,QO) . Q) . Q = 

INSERT'OUT(EI,REMOVE'OUT(EO,QO) . Q) . Q, 

LENGTH(INSERT'OUT(EO, QO) . Q) = 

LENGTH(QO) + I, 

LENGTH(REMOVE'OUT(EO, QO) . Q) = 

LENGTH(QO) - 1, 

TOP(INSERTOUT(EO,QO).Q) = TOP(QO), 

IS_MEMBER(EO,INSERT'OUT(EO,QO).Q), 

IS_MEMBER(TOP(Q),Q); 

private 

type  QUEUE_ARRAY is 

array(lNTEGER  range   <>)   of ELEMENT; 

type  QUEUE is  record 

STORE : QUEUE_ARRAY(I .  MAX); 

IN_PTR, OUT_PTR: INTEGER range  1..MAX; 

SIZE : INTEGER range  0 . . MAX; 

end  record; 

--|   <<QUEUE_INVARIANT>>  where 

--| in  out   Q: QUEUE  => 

--j (Q.IN_PTR — Q.OUT_PTR — Q.SIZE) 

--| mod MAX =  o; 

end  QUEUE_MANAGER; 

package   body   QUEUE_MANAGER is 

--:  function   IS_MEMBER(E :ELEMENT; Q : QUEUE) 

--:  return  BOOLEAN is   . . .    end  IS_MEMBER; 

function  LENGTH(Q : QUEUE)  return  INTEGER is 

. . .    end  LENGTH; 

function  TOP(Q: QUEUE)  return  ELEMENT is 

. . .    end  TOP; 

function   IS_EMPTY(Q : QUEUE)   return  BOOLEAN 

is   . . .    end   IS_EMPTY; 

function  IS_FULL(Q : QUEUE)   return  BOOLEAN  is 

. . .    end IS_FULL; 

function  CREATE return  QUEUE  is 

. . .    end  CREATE; 

 The complete implementation of INSERT is included 

 below since it is used in a subsequent example. 

procedure INSERT(E: ELEMENT; 

Q : in   out   QUEUE)   is 

—-|   <<BODY_INSERT>> 

— |  where 

 | out(Q.STORE(in   Q . IN_PTR)   =   E); 

begin 

if IS_FULL(Q)   then 

raise FULL; 

end  if; 

Q.STORE(Q.IN_PTR) := E; 

Q.IN_PTR   :=   Q.IN_PTR  mod   MAX + i; 

Q.SIZE := Q.SIZE + 1; 
end   INSERT; 

procedure  REMOVE(E:out  ELEMENT; 

Q:in  out  QUEUE)   is 

. ..    end  REMOVE; 

end   QUEUE_MANAGER; 

3    The Specification Analyzer 

The Specification Analyzer [10] simulates the visible 
behavior of a package by symbolic execution of Anna 
specifications. The Specification Analyzer may be used 
in two ways — to play mind games with a specifica- 
tion to get a preview of the behavior of the resulting 
package, and to debug the specification itself. 

Symbolic execution differs from actual program ex- 
ecution in that there is no implementation of the pro- 
gram. Logical deduction is used to deduce the state of 
a package and values returned by its subprograms. 

The Specification Analyzer is based on a theorem- 
prover. A model of the package state is built as a set 
of logical expressions concerning the relationships be- 
tween various functions defined in the package. The 
user asks questions of this state, such as querying the 
value of an expression or a function call. The theorem- 
prover then attempts to deduce answers to queries 
based on the current state of the package. 

The user may declare variables to create an environ- 
ment for the package being analyzed. Queries made 
to the Specification Analyzer can be formulated using 
these variables. The computation state is made up of 
environment variables and the state of the package be- 
ing analyzed. 

A user can interact with the Specification Analyzer 
in the following ways: 

• load a package specification, 

reset the package state to its initial state, 



• define a variable (of a specified type), 

• execute a procedure (this updates the state), 

• find the value of some expression, involving any 
environment variables and subprograms from the 
package begin analyzed (this may cause a state 
update if the function has a side-effect), 

• test whether a boolean condition (made up of en- 
vironment variables and subprograms in the pack- 
age) is true of the current state, 

• test the consistency of the state of the package 
being analyzed, or 

• explicitly change the state of the package by as- 
serting that a boolean expression is true of the new 
state. 

Figure 1 illustrates the interaction a user may have 
with the Specification Analyzer. 

User 

Manipulate Ina 
slate with 
operations on 
the package 

Query the state 
with Anna 
expressions and 
gel answers 

Computation State 
(Environment Variables and Package State) 

Figure 1: Interaction with the Specification Analyzer. 

3.1    A Sample Session 

To query the effect of executing the subprogram 
INSERT on an empty queue with an element E as an 
argument, the user would take the following steps: 

1. Load package QUEUE.MANAGER with 
ELEMENT = INTEGER and MAX = 10 to get 
queues of integers of maximum length 10. 

2. Declare the variable E : INTEGER. 

3. Assign to E some value. 

4. Declare the variable Q : QUEUE. 

5. Assert the condition IS_EMPTY(Q) = TRUE. 

6. Execute the subprogram INSERT(E,Q). This 
changes the state of the queue package being main- 
tained by the Specification Analyzer. 

7. The new state can now be inspected. For exam- 
ple, the user may query what the length of Q is in 
the new state by querying the value of the expres- 
sion LENGTH(Q). The Specification Analyzer will 
print out 1 in this case. 

The Specification Analyzer thus allows a user to get 
a preview of the behavior of the resulting package. The 
formal specification of the package is treated as a pro- 
totype implementation of the package. 

We now illustrate the detection of an error in the 
specifications. Assume that the following specification 
in package QUEUE_MANAGER: 

--| LENGTH(INSERT'OUT(EO,QO).Q) = 
— j LENGTH(QO) + 1 

was incorrectly written as: 

--| LENGTH(INSERT'OUT(EO,QO).Q) = 
--j LENGTH(QO)-I 

The user expects the length to increase as elements get 
inserted in the queue. However, according to the spec- 
ification, the length decreases. A simple query which 
asks the Specification Analyzer for the value of: 

LENGTH(INSERT'OUT(E, CREATE) Q) 

would reveal the error in the specification. The user 
expects the value 1 and the Specification Analyzer re- 
turns the value -1. The Specification Analyzer allows 
the formulation of complicated tests which may reveal 
more complicated bugs in a specification. 

The Specification Analyzer thus allows a user to de- 
bug a specification, without any implementation. Any 
discrepancy between the user's informal requirements 
and the formal specification will show up when using 
the Specification Analyzer. It is however, up to the 
user to design proper test cases to test the specifica- 
tion. 

4    The Anna Consistency 
Checking System 

The Anna Consistency Checking System is a set of 
programs that convert Anna annotations into runtime 
checking code. This checking code is inserted into the 
underlying Ada program. When the resulting Ada pro- 
gram is executed, the checking code ensures that any 
inconsistency in the program with respect to the an- 
notations is detected and reported. The resulting Ada 
program is linked to a special Anna debugger. 



To improve the performance of the Anna Consis- 
tency Checking System, there is an option to distribute 
the checking to different processors [17]. 

When a transformed Anna program is executed, the 
Anna debugger takes control and provides a top-level 
interface between the user and the program being 
tested. The debugger provides the following capabili- 
ties: 

• Diagnostics. 
Provides diagnostic messages when the program 
becomes inconsistent with an annotation. In this 
case, the annotation violated and the location of 
violation is displayed to the programmer. 

• Manipulation of annotations. 
Annotations can be suppressed or unsuppressed, 
and their effect when they are violated can be 
changed. For example, annotations can be com- 
pletely suppressed, i.e., the program will behave 
as if the annotation were not present. 

The programmer interacts with the debugger using 
menus, choosing displayed options with an input de- 
vice such as a mouse. The menus display the various 
options the programmer has in interacting with the 
debugger. In addition to these menus, there is a win- 
dow that displays the program execution. When an 
annotation is violated, two more windows are opened. 
One of these windows shows the annotation violated 
while the other shows the local program text around 
the statement where it was violated. This is illustrated 
in Figure 2. This Figure illustrates the scenario of the 
sample session that follows. 

The purpose of this session is to demonstrate the 
use of the Consistency Checking System in pinpointing 
and correcting errors. A more comprehensive example 
is given in [6]. 

Test: Prior to running this test, we introduce an er- 
ror in the implementation of the INSERT procedure. 
We delete the line: 

Q.IN_PTR   :=   Q.INJPTR  mod   MAX + i; 

We then create a mainline for our queue package and 
transform our program using the Consistency Checking 
System. We now attempt to perform an INSERT oper- 
ation on this transformed program after using CREATE 
to create a new queue. 

In this case, our test-data is the sequence of two calls 
to the queue package: first CREATE and then INSERT. 
Our tools do not aid us in the selection of test-data. 
However, a lot of research on test-data generation has 
been performed (see [3,5,20]) which can be used to help 
in the selection of comprehensive test-data. 

Result: The Anna Consistency Checking System de- 
tects a violation as shown in Figure 2. 

Explanation: This means that after an element was 
inserted, the invariant condition among Q.IN_PTR, 
Q.OUT_PTR, and Q.SIZE was violated. There are 
two possibilities: (1) The queue passed to INSERT was 
faulty — i.e., CREATE did not perform as expected; 
and (2) INSERT did not perform as expected. 

juat. 

Violation of annotation at 
the private part of QUEUEJWANAGER 

-I   «Q'JEUE_INVARIANT» 
-I  where In out Q:QOEUE ~> 
-I (O.tN m - O.OUT MR ; O.SIZE)  mod MAX - 0; 

PROGRAM I/O 

DRIVER» INSERTU,Q0); 
ANNA ERROR Is detei 

Violation occurred at 
BODY itrt QUEUE? SMA*ttGM:INS£RTi 

Q.STORE(Q.INPTR) ;- 
Q.SIZE :- O.SIZE + 1; 

end INSERT; 

Figure 2: Error Reporting By The Anna Debugger. 

4.1    A Sample Session 

This session starts with the detection of a fault by the 
Consistency Checking System. We then proceed me- 
thodically to pinpoint the error and correct it. This 
session consists of performing a test, observing the re- 
sult, an explanation on how to interpret the result and 
the actual action taken to further pinpoint this error. 

Action and Justification: We use our judgement 
and guess that INSERT did not perform as expected. 
We decide to repair the body of INSERT using a 
goal-oriented approach. The body of INSERT must 
achieve the following four goals as a result of updat- 
ing Q . INJPTR, Q. OUT_PTR, and Q. SIZE: 

1. out(Q.STORE(in   Q . IN_PTR)   =   E) 

2. out(Q.SIZE  =   in  Q.SIZE   +   l) 
3. out(Q.IN_PTR  =  in   Q. IN_PTR  mod   MAX   +   l) 
4. <<QUEUE_INVARIANT>> 

Since the fourth goal was violated, the body did not 
achieve it. A method of fixing the body has to be 
found so that it achieves the fourth goal. Looking at 
the body, it is obvious that the body achieves the first 
and second goals, but not the third one. It can be 
informally concluded that if an assignment statement 
is added to satisfy the third goal, then the fourth goal 



is also met. Hence, the following assignment statement 
is added to the body of INSERT: 

Q.IN_PTR  :=  Q.IN_PTR mod  MAX  +   l; 

5    Perfective Maintenance 

Perfective maintenance involves enhancing functional- 
ity, performance (space or time) or maintainability of 
a program. 

There are two ways a program and its specification 
may need to be changed as part of the perfective main- 
tenance process: 

1. extension. There may be a need to just add to the 
specification or the program. 

2. modification.TheTe may be a need to change the 
specification or the program. 

Perfective maintenance which enhances the perfor- 
mance of a program requires changing the design and 
code, but not the specification of the program. En- 
hancing maintainability of a program involves adding 
specifications to an unspecified or partially specified 
program. In both of these cases specifications do not 
substantially add to the process of change itself. How- 
ever, the task of testing specifications or programs is 
facilitated after the change has been made. 

We now consider perfective maintenance which in- 
volves changing the functionality of a program. The 
motivating idea is that extensions are relatively easier 
to handle than modifications. We present strategies 
using which, given an updated specification, a user 
may determine whether the implementation needs to 
be modified or just extended. 

The general problem of detecting this for any speci- 
fications is intractable. We informally show that if the 
changes to the specifications are of a certain form, one 
just needs to extend the implementation. 

If the specification of each of the old functions re- 
mains the same (the old functions are not redefined), 
one just needs to extend the implementation. Sec- 
tion 5.1 presents an example of this. 

If the specifications of any of the old functions are 
extended then one may need to modify parts of the im- 
plementation or just extend the implementation. Sec- 
tion 5.2 is an example of the case where even though 
specifications of some functions are extended, the im- 
plementation need just be extended. 

If the specifications of old functions are modified, 
one needs to (typically) modify the implementation. 
Section 5.3 is an example of this. 

5.1    Extending a Queue 

We add a function LAST_ELEMENT to queues. In- 
formally this function would return the element just 
added to the queue. Formally the specification of the 
function using axioms may be: 

function   LAST_ELEMENT(Q : QUEUE) 

return  ELEMENT; 

<<SPEC_LAST_ELEMENT>>   where 

IS_EMPTY(Q)   =>   raise  EMPTY; 

LAST_ELEMENT(INSERT'OUT(QO,EO) . Q) 

EO; 

The axiom says that the element returned is the 
one just inserted; the exception propagation annota- 
tion says that calling the function on an empty queue 
will result in an exception. 

This change need not result in re-coding. All the 
user needs to do is to implement LAST_ELEMENT by 
returning the element at IN_PTR in the array used to 
implement queues. 

This change thus was just an extension of both 
the specification and implementation of queues. The 
implementation was an extension of the old im- 
plementation due to the fact that the addition of 
LAST_ELEMENT did not change the specification (and 
thus behavior) of any other subprogram. 

5.2     Modifying Queue Specification 

We now change queues to double-ended queues. 
Double-ended queues have a function LAST_ELEMENT 
as described above and a function REMOVE_LAST 
which, informally, removes the last element in- 
serted into the queue. Formally the specification of 
REMOVE_LAST would be: 

procedure  REMOVE_LAST(Q :in  out   QUEUE); 

<<SPEC_LAST_ELEMENT>>   where 

IS_EMPTY(Q)   =>   raise  EMPTY; 

IS_MEMBER(E, REM0VE_LAST'0UT( 

INSERT'OUT(QO.EO) .Q)) 

= IS_MEMBER(E,QO), 

TOP(REMOVE_LAST'OUT( 

INSERT'OUT(QO.EO) Q)) 

= TOP(QO), 

REMOVE(REMOVE_LAST'OUT( 

INSERT'OUT(QO.EO) .Q)) 



--|       = REMOVE(QO), 

— I       LENGTH(REMOVE_LAST'OUT(Q)) 

— I        = LENGTH(Q)- I; 

In other words, REMOVE_LAST has the opposite ef- 
fect of INSERT. In this example, the specification of 
functions TOP, IS_MEMBER, REMOVE and LENGTH 
has been extended. All these functions must now 
be applicable to queues to which REMOVE_LAST has 
been applied. However, the implementation of queues 
just needs to be extended; the implementation just 
needs to decrement IN_PTR. This is because no new 
queues are created by application of REMOVEJLAST 
to queues. Any queue which is constructed by appli- 
cation of REMOVE_LAST can also be constructed by 
using just CREATE and INSERT. 

5.3    Modifying Queues Again 

We now change the functionality of the function 
REMOVE to remove elements from the back of the 
queue instead of the front. The function REMOVE thus 
behaves exactly like the function REMOVE_LAST. It 
is quite obvious that the specification and the imple- 
mentation of REMOVE need to be modified. 

6    Corrective Maintenance 

Corrective maintenance involves taking care of process- 
ing, performance or implementation failures. This can 
involve either correction of errors in the specification 
or in the program. 

Errors detected in the specification. A fault in 
the specification is detected in the following ways: 
(1) The program behaves as anticipated, but violates 
a specification — in this case, the violated specifica- 
tion is incorrect; or (2) The program does not behave 
as anticipated, but does not violate any specification 
either — in this case, the program is certainly incor- 
rect, and either the specification is also incorrect or is 
incomplete (does not specify against this behavior). 

In such a situation, we correct the specification first. 
We modify the specification based on the error we ob- 
serve. We now apply the Specification Analyzer on 
this new specification keeping in mind the error we 
detected. This will ensure that the specification has 
indeed been corrected appropriately. 

We now apply the Consistency Checking System on 
the program with the modified specification. If the pro- 
gram did not behave as anticipated earlier, the Con- 
sistency Checking System will now detect an anomaly. 

The paragraphs below explain what is done in this sit- 
uation. 

Errors detected in the program. This happens 
because of either an error in the program, or in the 
environment in which the program is running. In ei- 
ther case, the Consistency Checking System reports an 
inconsistency. In Section 4, we have already demon- 
strated one possible approach to pinpointing and cor- 
recting the error. A real-life experience of using the 
Consistency Checking System in going one step fur- 
ther to locate an Ada compiler bug is described in [16]. 

The above techniques of corrective maintenance can 
equally well be applied to earlier phases in the software 
development life-cycle. In software maintenance, their 
usefulness is made more significant by the fact that it is 
not always the case that the software developer is also 
the maintainer of the software. It is also possible that 
the software developer has forgotten the vast amounts 
of assumptions made in a large software project. 

7    Adaptive Maintenance 

Adaptive maintenance involves modifying software to 
overcome changes in the processing (both hardware 
and software) environment of the program. To solve 
this problem, the programmer must define precise in- 
terfaces to implementation dependent code. This inter- 
face should, however, be implementation independent. 
The idea being that when a change in the environ- 
ment is made, only the implementation of this inter- 
face needs to be changed. In addition to building such 
a interface, it helps to formally specify this interface, 
clearly laying out the assumptions that are being made 
of the underlying environment. Examples of such spec- 
ifications appear below. Violations with respect to such 
specifications indicate a mismatch between what is ex- 
pected of the environment and the actual environment 
itself. 

Ada has been written keeping portability in mind. In 
spite of the efforts made by the language design team, 
there are a variety of reasons why Ada programs are 
not portable: 

Errors in the new environment. The program 
may not run in the new environment if this new en- 
vironment contains errors. This may be due to errors 
in the compiler, runtime system, or even a hardware 
or operating system error. The usefulness of specifica- 
tions in detecting such errors is clearly indicated in [16], 
which describes the detection of a compiler bug when a 
certain piece of software was ported from a Sun work- 
station to a Sequent Symmetry machine. 



Size of predefined types. Some commonly avail- 
able Ada compilers represent the predefined type 
INTEGER using 16 bits, while others use 32 bits. When 
a program is ported from a 32 bit machine to the 16 bit 
machine it may stop working. A formal specification 
that states our assumption regarding the sizes of pre- 
defined types can ease the process of detecting such 
errors during the porting process. An example of such 
a specification is shown below: 

 I   INTEGER'FIRST   < = 

--     INTEGER'LAST   > = 

— 2**16+1, 

2**16 —i; 

An alternate solution that will work in most situations 
is to define new types and not rely on the bounds of 
predefined types2. For example, we could replace the 
above specification by: 

type MY_INTEGER is  range  —2**16 +1. .2**16 —l; 

and all occurrences of INTEGER in the program by 
MYJNTEGER. 

Erroneous programs. There are many situations in 
Ada where certain implementation details are left upto 
the compiler. If a program is written in such a way 
that it can behave differently depending on the choice 
of implementation made by the compiler, this program 
is considered erroneous. An example of an erroneous 
program is one whose execution depends on the order of 
evaluation of the two sides of an assignment statement. 
For example, if FIND and INSERT are two operations 
in a symbol table package, then the following statement 
may be erroneous: 

FIND("FOO").SIZE := 
COMPONENT_SIZE_SUM(INSERT("FOO")); 

Here, we assume that the right hand side is evaluated 
first. Erroneous programs should not be written in 
the first place, but mistakes are made especially when 
developing very large programs. Specifications about 
the intended behavior of the portion of the program 
containing the above assignment specification will usu- 
ally help in detecting the error when this program is 
compiled to evaluate the left-hand side of assignment 
statements first. 

Foreign language interfaces. When an Ada pro- 
gram is linked with programs written in other lan- 
guages, we need to ensure that data structures are 

2 We are forced to use predefined types in Ada in some sit- 
uations. For example, the package TEXT_IO uses the type 
STRING whose index type is INTEGER. 

passed correctly between code written in the different 
languages. Formal specifications that describe how the 
foreign language interface should behave ease the de- 
tection of any potential problems when, for example, 
the Ada program calls C routines, and the C compiler 
is replaced by another C compiler with different stor- 
age mechanisms. 

8    Real-Life Experiences 

The use of even extremely trivial annotation constructs 
has helped us greatly in the maintenance process. We 
have many large pieces of software that have been lying 
around for many years, but get periodically upgraded. 
Many times, we have been warned of inconsistent up- 
grades as a result of violations with respect to very 
simple annotation constructs. An example of a com- 
monly occurring annotation construct is an assertion 
about the value of a pointer variable: 

--| PTR /= null; 

The above assertion specifies formally an assumption 
that the pointer variable PTR references a data struc- 
ture at this point. Any upgrade that causes PTR to be 
null at this point will immediately cause the reporting 
of an inconsistency. 

One of the authors has developed an overload reso- 
lution package for Ada/Anna expressions. The size of 
this package is around 3000 lines, and contains many 
annotations specifying assumptions as complex as the 
overall functionality of the overload resolution package, 
to assumptions as simple as assertions about a particu- 
lar program state. Many of these annotations are more 
than three years old. These annotations have proved 
to be invaluable in the maintenance of the overload res- 
olution package especially since violations are reported 
automatically and also since the author has forgotten 
many of the assumptions he made. 

9    Conclusions 

The advantages of software maintenance using formal 
specifications, as exemplified by our methodology and 
tools, over present software maintenance methods and 
tools include: 

•  The program requirements are stated formally. 
The set of specifications to be tested at each level 
of program structure constitutes a formal defini- 
tion of the behavior to be tested at that level. Con- 
sequently, the error detection process may involve 
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several people with understandings of different lev- 
els and components of the software. A systems 
designer may, for example work with high level 
specifications, and hand over a precise problem — 
"this specification of that component is violated 
by this test sequence" — to an expert in a partic- 
ular component. 

• Faults in the specification can be detected method- 
ically. 
Currently, there are very few tools that allow us 
to analyze specifications symbolically. The Spec- 
ification Analyzer permits us to play mind-games 
with the specification. The results of these mind 
games are facts about the program execution that 
can be determined from the specification. Using 
this information, it is usually quite easy to detect 
faults in specifications. 

• Faults in the program are detected automatically. 
Current debuggers gather information from the 
lowest implementation levels of a program and 
its runtime environment. The programmer must 
deduce what is happening from this information. 
Some more advanced debuggers can test boolean 
assertions about program variables. The Consis- 
tency Checking System, on the other hand, pro- 
vides the power to test very general constraints 
on packages, abstract types, data structures, and 
subprograms. The task of searching output traces 
in order to recognize errors is eliminated. 

• Very complex tests can be formulated easily. 
For example, specifications against side-effects on 
global data are easily formalized and are then 
tested automatically. Typical one-line abstract 
specifications that are checked by our tools could 
require manual insertion of large numbers (possi- 
bly hundreds) of breakpoints, print statements, or 
assertions, in order to be checked by current kinds 
of debuggers. 

• Our methods and tools are independent of the lan- 
guage implementation. 

• Our methods apply to other development processes 
in the software life-cycle. 
The techniques used in software maintenance can 
be applied earlier in software development, for ex- 
ample in analyzing simulations and in using proto- 
types to develop formal standard specifications for 
module interfaces. We have also mentioned earlier 
that techniques developed primarily for debugging 
can be easily adapted to software maintenance. 
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